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1.0 Introduction 
 
A typical embedded system application makes use of a small processor that coordinates 
execution and processing of data between peripherals. Program code is usually stored in 
on-chip flash memory, while data is stored and retrieved from on-chip RAM [1].  
 
A System-on-Chip (SOC)-based embedded system is one which uses configurable 
hardware surrounding a soft or hard processor core [2]. The purpose of this report is to 
study the architecture of Programmable System-on-Chip (PSoC) from Cypress 
Semiconductor and compare it to the more conventional FPGA-based SoC architecture.  
 
Next section provides a background on FPGA-based SoC and Cypress PSoC 
architectures. The third section studies the configurable digital components of the PSoC 
architecture in detail. The fourth section talks about Cypress Programmable Radio-on-
Chip (PRoC) technology and discusses how it could be used to enable wireless 
communication between PSoC devices. The fifth section Details the use of PSoC 
Designer, an integrated IDE used to design PSoC applications. The sixth section 
demonstrates two applications: one PSoC application which demonstrates the concept of 
dynamic re-configurability of PSoC devices, and another PRoC application which 
establishes a remote control channel between two PRoC devices.   
 
 
2.0 Background 
 
Conventional FPGA-based SoC architecture consists of configurable logic blocks 
(CLB’s), configurable I/O blocks, programmable interconnect, and a soft or hard 
processor core [2], as shown in Figure 1 below. 
 

 
Figure 1: FPGA-based SoC Architecture 



 
The CLB is the basic building block in an FPGA. It contains RAM for lookup tables 
(LUT), flip-flops for clocked storage elements, and multiplexers for routing signals to 
and from the CLB. Programmable interconnect within the FPGA is used to connect 
different CLB’s and I/O blocks together and act as buses to route the signals between the 
different components of the FPGA [2].  
 
A hard processor is a fixed processor embedded in the FPGA, and surrounded by 
programmable logic [2]. A soft processor is a logic description of a processor than can be 
included in the design of an FPGA-based SoC [2].  
 
The low-level of abstraction and general-purpose nature of the building blocks making up 
an FPGA makes it a very flexible solution. Design complexity however is high. To 
design an FPGA-based SoC application one has to design (or select) a soft or hard 
processor, design (or select) the required peripheral set for the application, compile the 
design into a gate level description, place and route the design onto the FPGA, and finally 
write the application’s software [2]. 
 
Similar to an FPGA-based SoC, a PSoC consists of (among other things) a fixed 
processor core, a number of configurable digital blocks, and programmable interconnect 
[3]. A high level view of the PSoC architecture is shown in Figure 2 below. 
 

 
Figure 2: Cypress Semi PSoC Architecture 



 
The basic building block in a PSoC is the Digital Block (Digital Block). This is 
analogous to a CLB in an FPGA. A Digital Block however is a much higher level of 
abstraction than a CLB is.  
 

 
Figure 3: Digital Block Top Level Block Diagram 

 
A Digital Block consists of the data path, input multiplexers, output de-multiplexers, 
configuration registers, and chaining signals [3]. Through the RAM-based configuration 
registers, a Digital Block may be configured to perform any one of seven functions: timer, 
counter, pulse width modulator (PWM), pseudo random sequence (PRS), cyclic 
redundancy check (CRC), SPI, and a full duplex UART [1]. Each Digital Block provides 
8 bits of resolution (8-bit timer, 8-bit counter …etc.). Multiple Digital Block’s can be 
chained together to provide higher resolution functions [1].  
 
The programmable interconnect enables routing of signals from any Digital Block to any 
of the on-chip I/O pins. Furthermore, any Digital Block’s output can be routed to any 
Digital Block’s input. Configuring the digital interconnect is again done through RAM-
based configuration registers [3].  
 
By fixing the processor core and the component placement, and incorporating a high-
level configurable digital block and interconnect design, PSoC architecture provides its 
users with a much simpler embedded system design model while still providing a degree 
of flexibility, enough to meet the needs of a large segment of the embedded systems 
market [1]. 
 



To design a PSoC-based embedded system application, one has to select the function of 
each of the digital blocks, route the signals to their proper end-points, and write the 
application’s software in C or Assembly language. Knowledge of hardware design is not 
required [1]. The next section looks at the PSoC architecture in detail. 
 
 
3.0 PSoC Architecture 

 
Figure 4: PSoC top-level block diagram 

 
A PSoC consists of four main elements [3], as shown above in the Figure 4:  

1- The PSoC core is common to all PSoC families. It contains a proprietary 24MHz 
M8C CPU core, on-chip RAM and flash memories, multiple clock sources, a 
sleep-and-watchdog timer, and an interrupt controller [1].  

 
2- The Digital System contains a number of digital blocks. Each digital block can be 

configured (and reconfigured) to perform one of several digital functions such as 
32-bit timer, 16-bit PWM, UART and SPI [1].  

 
3- The Analog System contains a number of analog blocks. Each analog block can 

be configured and reconfigured to perform one of several analog functions such as 
filters, amplifiers, tone generators, ADCs, and DACs [1]. 

 
4- Finally, System Resources provide additional PSoC capability. They include 



multiply-accumulates (MAC), decimators, I2C, a Switch Mode Pump (SMP), and 
a full speed (12Mbps) USB [1]. 

 
 

All of the elements mentioned above are connected through a configurable digital and 
analog interconnect switching fabric which enables different blocks to be connected to 
each other and to drive or be driven from any of the I/O pins available on-chip. The 
Analog System, the Digital System, and the interconnect form the configurable core of 
the PSoC device [3]. 
 
This report is concerned with the reconfigurable digital components of the PSoC, as these 
components most closely relate to the reconfigurable-hardware concept found in FPGA-
based SoC’s. For information on the rest of the system, including the PSoC core, the 
Analog System, and the System Resources please refer to [1] and [3]. 
 
3.1 Digital System 

 
Figure 5: PSoC Digital System Block Diagram 

 
The configurable digital system in a PSoC consists of three main components [3]: 

1. The Global Digital Interconnect (GDI) 
2. The Row Digital Interconnect (RDI) 



3. The digital blocks 
 
The Digital Blocks can be configured to perform one of seven peripheral functions. The 
RDI and GDI form the interconnect that allows signal routing to and from the digital 
blocks. The RDI connects the outputs and inputs of digital blocks to the GDI. The GDI in 
turn connects the RDI to the on-chip I/O pins. Together, the RDI and GDI can route the 
inputs and outputs of any of the digital blocks between each other and to any of the on-
chip I/O pins.  Figure 6 below shows a typical PSoC application that uses a Pulse-Width-
Modulated (PWM) Output. Digital Block 0 is configured as an 8-bit PWM whose output 
is routed to pin 0 of port 0 through the configurable digital interconnect. 
 

 
Figure 6: Digital Block_0 is configured as an 8-bit PWM whose output is routed to 
pin 0 of port 0 through the digital interconnect. GDI buses are vertical green. RDI 

Input bus is horizontal red. RDI output bus is horizontal blue. Digital blocks are the 
4 blocks shown in the middle of the diagram 

 
Configuration of the digital blocks and the digital interconnect is done by programming 
various RAM-based registers. Specific configurations of these registers can be stored in 
the on-chip flash and loaded into RAM whenever needed, thus allowing for dynamic 
reconfiguration of the PSoC. 
 
The next subsection studies the Global Digital Interconnect (GDI), the following 
subsection studies the Row Digital Interconnect (RDI), and the last subsection studies the 
Digital Block. The three subsections will therefore cover the configurable digital 
components of PSoC devices.  
 
3.1.1 Global Digital Interconnect 
 
The GDI consists of four 8-bit buses which allow signals to pass to/from the device pins 
from/to the core of the PSoC device [3]. Two of the buses are input buses called Global 
Input Odd (GIO) and Global Input Even (GIE) [3]. The other two are output buses called 
Global Output Odd (GOO) and Global Output Even (GOE) [3]. Odd busses connect to 
odd I/O ports such as ports 1, 3, 5, and 7. Similarly, even buses connect to even I/O ports 
such as ports 0, 2, 4, and 6. 
 



The four GDI buses are shown as vertical green in Figure 6. The Figure shows the output 
of the first Digital Block being routed to output pin 0 of port 0 through the GOE_0.  
 
3.1.2 Row Digital Interconnect 
 
The RDI consists of four Row Input nets (RI[3:0]) and four Row Output nets (RO[3:0]) 
[3]. The input nets can be seen in Figure 6 as the four red horizontal lines. Their job is to 
route signals from the GDI to the inputs of the Digital Blocks [3]. Each Row Input 
contains a 4-to-1 multiplexer whose inputs are fed by four GDI lines. The outputs of 
these muxes are Row Inputs (RI[x]) [3]. This means that any single Row Input net can 
connect to one of four possible GDI lines [3], as can be seen to the left of Figure 7 below. 
Since the inputs to the muxes are unique to each mux, a complete Row Input has access 
to every global input line in a PSoC device [3].   

 
Figure 7: Digital PSoC Block Row Structure 

 
Each of the four muxes in a Row Input can be controlled by writing to the Row Input 
Register [3]. As with all other configuration registers, the Row Input Register is RAM-
based. This means that it can be configured during start up, as well as during normal 
operation of the PSoC device. This allows for dynamic reconfiguration of the input nets 
of the PSoC device. Figure 8 below shows an example in which Digital Block 0 is 



configured as an input capture 8-bit timer whose input is fed from pin 0 of port 0 through 
Row Input RI[0]. 
 

 
Figure 8: Digital Block 0 is configured as an 8-bit input-capture Timer whose input 

is fed from pin 0 of port 0 through the digital interconnect. Row Input nets are 
horizontal red. 

 
The Row Output nets are a bit more involved than the Row Input nets, as can be seen to 
the right of Figure 7. In the Figure, the block labeled Lx represents a 2-input look-up 
table (LUT). The LUT allows the user to specify any one of 16 logic functions that 
should be applied to the two inputs [3]. A more detailed structure of one Row Output is 
shown in figure 9 below. The 16 logic functions are shown in table 1 [3]. 
 

 
Figure 9: Example of LUT0 configuration 

 

 
Table 1: LUT logic functions 

 



The output of a LUT can drive as many as 4 GDI lines, through configurable tri-state 
buffers [3]. The LUT’s inputs, outputs, and logic functions are configured through RAM-
based registers which can be loaded with settings stored in flash memory after power up 
or during normal operation of the device, thus allowing for initial configuration and 
dynamic reconfiguration of signal routing from the digital blocks to the output pins.  
 
Row Output RO[3:0] are shown as horizontal blue lines in Figure 6 and Figure 8. 
 
3.1.3 Digital Blocks 
 

 
Figure 10: Digital Block Top Level Block Diagram 

 
A Digital Block consists of the data path, input multiplexers, output de-multiplexers, 
configuration registers, and chaining signals [3]. Through the RAM-based configuration 
registers, a Digital Block may be configured to perform any one of seven functions: timer, 
counter, pulse width modulator (PWM), pseudo random sequence (PRS), cyclic 
redundancy check (CRC), SPI, and a full duplex UART [3]. Each Digital Block provides 
8 bits of resolution (8-bit timer, 8-bit counter …etc.). Multiple Digital Blocks can be 
chained together to provide functions with higher resolution [3].  
 
There are three inputs to a Digital Block: Clock, data, and auxiliary [3]. Typically, each 
function has a clock and a data input that can be selected from one of 16 possible input 
sources, through the 16-to-1 input mux [3]. This leaves the auxiliary input, which is 
selected through the 4-to-1 mux. The auxiliary input is designed specifically to act as the 
SPI Slave-Select signal for a Digital Block configured in Slave SPI mode [3].  
 



There are five main outputs to a Digital Block: A primary output, an auxiliary output, a 
chaining signal, and a block interrupt [3]. The primary and auxiliary outputs can be 
configured to drive the RDI Row Output bus through two 1-to-4 de-muxes [3]. The 
chaining signals propagate information from one Digital Block to the next, thus allowing 
functions with higher resolutions to be implemented [3]. The block interrupt is function-
dependant and is used to trigger a vector-based interrupt signal to the PSoC core [3].   
 
The input signals, the output signals, and the function of the data path are configured by 
seven RAM-based registers: Three Data Registers, a Control Register, a Function 
Register, an Input Register, and an Output Register [3].  
 
The definition of most of these registers is function-dependant. For example, the Control 
Register contains the function control and status bits for the selected function. The 
definition for each bit in the Control Register changes depending on the selected function, 
as shown in table 2 below [3].  
 

 
Table 2: Control Register Description 

 
Similarly, the definition for the three data registers changes depending on the selected 
function of the Digital Block. For example, when the Timer function is selected, Data 
Register 0 is automatically configured to hold the Count value, Data Register 1 is 
automatically configured to hold the Period, and Data Register 2 is automatically 
configured to hold the Capture/Compare value [3]. Alternately, if the SPI Master function 
is selected, then Data Register 0 is automatically configured to function as the serial 
shifter, Data Register 1 is automatically configured to function as the transmit buffer, and 
Data Register 2 is automatically configured to function as the receive buffer [3].  
 



This leaves the Function Register, the Input Register, and the Output Register. The 
Function register enables selection of the intended function of the Digital Block [3]. The 
Input Register enables configuration of the three input signals of the Digital Block [3]. 
The Output Register enables the configuration of the output signals of the Digital Block 
[3]. 
 
Since all seven registers are RAM-based, several Digital Block settings can be stored in 
flash memory and later reloaded as required by the application, thus allowing for the 
function of each Digital Block to be dynamically reconfigured.   
 
 
4.0 Programmable Radio-on-Chip Technology 
 
Programmable Radio-on-Chip (PRoC) technology combines PSoC technology with a 
fully-programmable on-chip wireless transceiver [4].  

 
Figure 11: PRoC Block Diagram 

 
The wireless transceiver portion is a complete SPI-to-antenna radio modem designed to 
operate in the 2.4GHz ISM band [5]. It contains a low-Intermediate Frequency (low-IF) 
front end, a Gaussian Frequency Shift Keying (GFSK) modem, and a reconfigurable 
Direct Sequence Spread Spectrum (DSSS) baseband processor [5]. A 
Serializer/Deserializer (SERDES) block provides byte-level framing of transmit and 
receive data, and an SPI interface provides connectivity to the rest of the PSoC [5].  



 
Figure 12: Wireless transceiver simplified block diagram 

The transmit operation begins by loading a new byte into the Serializer using the SPI 
interface of the radio. The Serializer in turn loads the byte into a serial shift register 
whose output feeds the DSSS baseband processor [5]. The output of the Serializer is 
programmable at 3 different data rates: 16kbps, 32kbps, and 64kbps [5].  
 
The DSSS baseband processor uses Gold Codes to spread each incoming bit into a 
maximum of 64 chips [5]. Gold Codes are chosen due to their excellent autocorrelation 
and cross-correlation properties. The number of chips per bit (cpb), also known as the 
spreading factor, depends on the selected data rate. 64cpb is used when 15kbps is selected, 
32cpb is used when 32kbps is selected, and 16cpb is used when 64kbps is selected [5]. 
The output of the baseband processor is therefore a fixed 1Mcps baseband signal.  
 
The output of the DSSS baseband processor feeds a GFSK modulator. This modulator 
uses a DSP-based vector to convert the baseband signal to an accurate IF GFSK carrier 
[5]. The modulated signal is then mixed up to the appropriate frequency channel by 
tuning the frequency synthesizer to that channel. The frequency synthesizer is tunable 
over 80 1MHz channels with channel 0 starting at 2.400GHz and channel 79 ending at 
2.479GHz. The modulated signal occupies a bandwidth of 1MHz [5]. 
 
The output of the mixer feeds an integrated power amplifier that provides a 
programmable output power control range of 30dB in seven steps, as shown in Table 3 
below [5]. 
 



 
Table 3: Internal PA Output Power Step Table 

 
On the receive side, an FM detector with automatic data slicer demodulates the mixed 
down GFSK signal into baseband [5]. The DSSS baseband processor correlates the 
incoming baseband signal with the programmed Gold Code sequence, thus de-spreading 
the signal, and feeds the De-Serializer with the de-spread signal. The de-serializer issues 
an interrupt to the external processor which in turn reads the newly received byte through 
the SPI interface [5].  
 
As mentioned above, programmable features in the radio include the Gold Code selection, 
frequency channel, data rate, and output power. Other programmable features include 
power management and RSSI functionality [5]. 
 
 
5.0 Designing with PSoC Designer 
 
PSoC Designer is an Integrated Development Environment (IDE) used to develop 
applications for PSoC and PRoC devices. It contains a Device Editor, an Application 
Editor, a C-Compiler, an Assembler, a Builder, and a Real-Time Debugger [6].  
 
The Device Editor is really what separates PSoC Designer from other microcontroller-
based development environments. It allows GUI-based configuration of the entire PSoC, 
as well as automatically generates all the necessary API specific to an application [6].  



 
Figure 13: Selected (Yet-to-be-placed) user modules 

 
Figure 13 above shows a snapshot of the Device Editor. PSoC global resources can be 
configured at the top left of the figure. I/O ports can be configured at the lower left of the 
figure. Digital and Analog Blocks can be selected, placed, and routed in the main area in 
the middle. All of this is done graphically. 
 
After configuring, placing and routing a design, the Device Editor will generate 
application files based on the device configuration. These application files include 
Application Programming Interface (API) and Interrupt Service Routine (ISR) shells [6]. 
The Device Editor will also create a datasheet based on the device configuration [6]. 
 
Once the application files are generated, the Application Editor can be used to create the 
application code and build it into a HEX file. The HEX file is then loaded into the on-



chip flash memory of the target device. Flash-programming is performed using the PSoC 
Programmer tool which accompanies PSoC Designer [7].  
 
 
6.0 PSoC Applications 
 
Two applications are implemented and their hardware/firmware described in this section. 
The first application generates multiple PWM signals from a single PWM generator and 
is used to illustrate the concept of dynamic re-configurability of the PSoC device. The 
second application establishes a point-to-point Remote Control channel using PRoC 
technology. The purpose of this application is to illustrate the ease with which a Spread 
Spectrum wireless application could be developed using PRoC technology. 
 
6.1 Application 1: Multiple PWM Signal Generation 
 
The first application generates multiple PWM signals from a single PWM generator. The 
purpose of this application is to demonstrate the dynamic re-configurability of the Digital 
system.  
 
First, the PSoC is graphically configured as shown in the figure below. 
 

 
Figure 14: Application configuration 

 
As can be seen from the figure, Digital Blocks 0 and 1 are configured to function as a 16-
bit PWM. RDI0 (the horizontal blue lines) connects the output of the PWM to I/O pins 
1_0 to 1_3. Reconfiguring the output of the PWM at run-time to different rows of RDI0 
will route the PWM signal to different pins. For example, configuring the output of the 
PWM to row 0 of RDI0 connects the PWM output to pin 1_0, while reconfiguring the 
output of the PWM to row 1 of RDI0 connects the PWM output to pin 1_1. This enables 
us to generate multiple PWM signals from a single PWM generator. 
 



The output of a Digital Block is configured through its RAM-based Output Register [3], 
shown below. Bits 1 and 0 select the RDI row to which the output of the block connects.  
 

 
Figure 15: Digital Block Output Register bit definitions 

 
The output of the PWM connects to one pin at a time. This means that all other pins are 
left unconnected for a small period of time. To avoid glitches on the unconnected pins, 
they must be driven low when not in use. This is done by reconfiguring the LUT which 
drives these pins to false [3]. The operation of the LUT was discussed in section 3.1.2. Its 
architecture and truth table are repeated here for the reader’s convenience. 
 

 
Figure 16: Example of LUT0 configuration 

 

 
Table 4: LUT logic functions 

 
Application code is based on a Finite State Machine (FSM) with four states. The PWM is 
driven by a 60 KHz clock. The period is set to 30000 (half a second), and the pulse width 
is set to 15000 (quarter of a second). The PWM issues an interrupt every half a second. 
The interrupt is used to trigger the next state transition in the FSM, during which the 
reconfiguration takes place.  
Main initializes the PWM FSM, enables global interrupts, and loops indefinitely. The 
ISR calls the PWM task which triggers the next transition in the FSM. Application code 
is shown below. 



 
//---------------------------------------------------------------------------- 
// C main line 
//---------------------------------------------------------------------------- 
 
#include <m8c.h>        // part specific constants and macros 
#include "PSoCAPI.h"    // PSoC API definitions for all User Modules 
 
 
//External function prototypes 
extern void pwm1_init(void); 
extern void task_pwm1(void); 
 
 
void main() 
{ 
    //initialize the PWM task 
    pwm1_init(); 
     
    //enable global interrupts and loop indeinitely 
    M8C_EnableGInt; 
    while (TRUE); 
} 
 
 
//PWM ISR 
//Triggers every 0.5 second on PWM terminal count 
//calls the PWM task 
#pragma interrupt_handler pwm1_isr 
void pwm1_isr(void) 
{ 
 task_pwm1(); 
} 
  
 
//---------------------------------------------------------------------------- 
// PWM FSM 
//---------------------------------------------------------------------------- 
#include <m8c.h>        // part specific constants and macros 
#include "PSoCAPI.h"    // PSoC API definitions for all User Modules 
 
 
 
//state definitions 
#define STATE_PWM_P10  0  //output PWM on Port 1 Pin 0 
#define STATE_PWM_P11   1  //output PWM on Port 1 Pin 1 



#define STATE_PWM_P12  2  //output PWM on Port 1 Pin 2 
#define STATE_PWM_P13  3  //output PWM on Port 1 Pin 3 
 
 
//Bit masks for RDI LUT registers 
#define RDIxLT0_LUT0_A    0x03 
#define RDIxLT0_LUT0_FALSE   0x00 
#define RDIxLT0_LUT1_A    0x30 
#define RDIxLT0_LUT1_FALSE   0x00 
#define RDIxLT1_LUT2_A    0x03 
#define RDIxLT1_LUT2_FALSE   0x00 
#define RDIxLT1_LUT3_A    0x30 
#define RDIxLT1_LUT3_FALSE   0x00 
 
 
//Bit masks for Digital Blocks Output Registers 
#define DxBxxOU_AUXCLK_SYNC 0x40 
#define DxBxxOU_OUTEN   0x04 
#define DxBxxOU_ROW0   0x00 
#define DxBxxOU_ROW1   0x01 
#define DxBxxOU_ROW2   0x02 
#define DxBxxOU_ROW3   0x03 
 
 
//variable which holds the current state of the FSM 
static BYTE state; 
 
//initializes the PWM task 
void pwm1_init(void); 
//the PWM task 
//implements an FSM which switches the output of the 
//PWM to four different I/O pins: P1_0 to P1_3 
void task_pwm1(void); 
 
 
//Initializes the PWM task 
void pwm1_init(void) 
{  
 //initialize first state 
 state = STATE_PWM_P10; 
  
 //enable the block interrupt and start the PWM 
 PWM1_EnableInt(); 
 PWM1_Start(); 
} 
 



 
//the PWM task 
//implements an FSM which switches the output of the 
//PWM to four different I/O pins: P1_0 to P1_3 
void task_pwm1(void) 
{ 
 //the FSM contains 4 states connected in a circular manner: 
 //the first state connects to 2nd, 2nd to 3rd, 3rd to 4th, 
 //and 4th back to 1st. 
 //Each state performs the following: 
 //1-stop the PWM 
 //2-reconfigure the output of the PWM to the proper pin 
 //3-reconfigure the drive of all other pins to low 
 //4-restart the PWM 
 //5-go to next state 
 switch (state)  
 { 
 case STATE_PWM_P10: 
  //stop the PWM 
  PWM1_Stop(); 
   
  //reconfigure output of PWM to pin 1_0 

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC | 
DxBxxOU_OUTEN | DxBxxOU_ROW0; 

   
  //reconfigure the drive of pins 1_1, 1_2, and 1_3 to low 
  RDI0LT0 = RDIxLT0_LUT0_A | RDIxLT0_LUT1_FALSE; 
  RDI0LT1 = RDIxLT1_LUT2_FALSE | RDIxLT1_LUT3_FALSE; 
   
  //restart the PWM 
  PWM1_Start(); 
   
  //go to next state 
  state = STATE_PWM_P11; 
 break; 
  
 case STATE_PWM_P11: 
  PWM1_Stop(); 
   

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC | 
DxBxxOU_OUTEN | DxBxxOU_ROW1; 

   
  RDI0LT0 = RDIxLT0_LUT0_FALSE | RDIxLT0_LUT1_A; 
  RDI0LT1 = RDIxLT1_LUT2_FALSE | RDIxLT1_LUT3_FALSE; 
   
  PWM1_Start(); 



   
  state = STATE_PWM_P12; 
 break; 
  
 case STATE_PWM_P12: 
  PWM1_Stop(); 
   

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC | 
DxBxxOU_OUTEN | DxBxxOU_ROW2; 

   
  RDI0LT0 = RDIxLT0_LUT0_FALSE | RDIxLT0_LUT1_FALSE; 
  RDI0LT1 = RDIxLT1_LUT2_A | RDIxLT1_LUT3_FALSE; 
   
  PWM1_Start(); 
   
  state = STATE_PWM_P13; 
 break; 
  
 case STATE_PWM_P13: 
  PWM1_Stop(); 
   

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC | 
DxBxxOU_OUTEN | DxBxxOU_ROW3; 

   
  RDI0LT0 = RDIxLT0_LUT0_FALSE | RDIxLT0_LUT1_FALSE; 
  RDI0LT1 = RDIxLT1_LUT2_FALSE | RDIxLT1_LUT3_A; 
 
  PWM1_Start(); 
   
  state = STATE_PWM_P10; 
 break; 
 } 
} 
 
 
6.2 Application: Remote Control 
 
The second application establishes a point-to-point Remote Control channel in the 
2.4GHz ISM band. The purpose of this application is to illustrate the ease with which a 
Spread Spectrum wireless application can be developed using PRoC Technology.  
 
The application consists of two components: Transmitter and Receiver. The hardware for 
both nodes is shown below.  



 
Figure 17: Transmitter Hardware 

 
Figure 18: Receiver Hardware 

 
The transmitter continuously samples the switch connected to P0_2. When pressed, the 
transmitter sends a packet containing four predefined bytes to the receiver on channel 0 



of the 2.4GHz band. The receiver listens to that channel continuously and when it 
receives a valid packet it toggles the LED connected to P1_0.  
 
The Device Editor in PSoC Designer is first used to graphically configure the transmitter 
and receiver nodes. The Device Editor then generates all the necessary API for using the 
device, including functions to establish wireless communication. The Application Editor 
is then used to write the application code for each of the nodes. Transmitter and Receiver 
codes are shown below. 
 
//---------------------------------------------------------------------------- 
// TRANSMITTER 
//---------------------------------------------------------------------------- 
 
#include <m8c.h>        // part specific constants and macros 
#include "PSoCAPI.h"    // PSoC API definitions for all User Modules 
 
 
#define LED_PORT   PRT2DR 
#define LED    0x80 
#define SWITCH_PORT  PRT0DR 
#define SWITCH   0x04 
 
#define PACKET_LENGTH 4 
 
#define MESSAGE_EMPTY  0 
#define MESSAGE_TIMEOUT 1 
 
//macros used to sample a switch 
#define WAIT_FOR_PRESS  while(SWITCH_PORT & SWITCH) 
#define WAIT_FOR_RELEASE while(!(SWITCH_PORT & SWITCH)) 
 
//a 64-chip Gold Code 
const BYTE pn_code[8] = {0x36, 0xF3, 0x8C, 0xB5, 0x11, 0x4A, 0xCA, 0x1F}; 
 
 
BYTE message; 
//a predefined packet to be used as a command to toggle a LED at the receiver 
BYTE packet[PACKET_LENGTH] = {0x12, 0x34, 0x56, 0x78}; 
 
 
//function used to debounce a switch once pressed or released 
//implements a 40ms blocking wait 
void debounce_switch(void); 
 
 
 



//Main 
void main() 
{ 
    //initialize the transceiver 
    Radio_Start(); 
    //set the 64-chip Gold Code stored in flash 
    Radio_SetPnCode(pn_code); 
    //set channel 0 to be used for transmission 
    Radio_SetChannel(0); 
     
    //enable global interrupts 
    M8C_EnableGInt; 
    //do forever 
    while (TRUE) { 
     //wait for switch press 
     WAIT_FOR_PRESS; 
     //debounce 
     debounce_switch(); 
     //wait for switch release 
     WAIT_FOR_RELEASE; 
     //debounce 
     debounce_switch(); 
     //tx packet 
     LED_PORT ^= LED; 
     Radio_SendData(PACKET_LENGTH, packet); 
    } 
}//end main 
 
//implements a 40ms blocking wait 
//used to debounce a switch press and release 
//uses timer interrupt 
void debounce_switch(void) 
{ 
            //set message to EMPTY, enable timer interrupt and start the timer 
            //Timer ISR will set message to TIMEOUT after 40ms 
 message = MESSAGE_EMPTY; 
 Timer_EnableInt(); 
 Timer_Start(); 
 
            //wait for timer ISR to set message to TIMEOUT 
 while (message == MESSAGE_EMPTY); 
            //stop timer 
 Timer_Stop(); 
} 
 
 



//Timer ISR 
//triggers when timer expires 
#pragma interrupt_handler timer_isr 
void timer_isr(void) 
{ 
            //set message to TIMEOUT 
 message = MESSAGE_TIMEOUT; 
}//end of file 
 
 
 
 
//---------------------------------------------------------------------------- 
// RECEIVER 
//---------------------------------------------------------------------------- 
 
#include <m8c.h>        // part specific constants and macros 
#include "PSoCAPI.h"    // PSoC API definitions for all User Modules 
 
 
#define LED_PORT   PRT1DR 
#define LED    0x01 
 
#define TIMEOUT_1S  60000 
 
#define PACKET_LENGTH 4 
 
//same 64-chip Gold Code used at the transmitter side 
const BYTE pn_code[8] = {0x36, 0xF3, 0x8C, 0xB5, 0x11, 0x4A, 0xCA, 0x1F}; 
 
//used to buffer an incoming packet 
BYTE packet[PACKET_LENGTH]; 
BYTE valid[PACKET_LENGTH]; 
 
void main() 
{ 
    BYTE length; 
  
    //initialize the transceiver 
    Radio_Start(); 
    //set the Gold Code stored in flash 
    Radio_SetPnCode(pn_code); 
    //set channel 0 to be used in reception 
    Radio_SetChannel(0); 
     
 



    //do forever 
    while(TRUE) { 
            //try to receive a 4-byte packet within a 1 second timeout 
            //blocking read 
     length = Radio_bReadData(PACKET_LENGTH, packet, valid, TIMEOUT_1S); 
      
            //check that the packet length is correct 
     if (length != PACKET_LENGTH) continue; 
            //check that the command for toggling the LED is correct 

if ((packet[0] == 0x12) && (packet[1] == 0x34) && (packet[2] == 0x56) && 
(packet[3] == 0x78)) { 

      LED_PORT ^= LED; 
     }  
    } 
}//end of main 
 
7.0 Conclusion 
 
The fine-configurability of FPGA-based SoC’s provides an extremely flexible platform 
that is both hardware and software programmable. The drawback to such architecture 
however is the design complexity present and the complex hardware skills required to 
mold an FPGA-based SoC into the desired application.  
 
PSoC technology from Cypress Semiconductor tackles the design complexity and the 
required hardware skill issues by fixing the components that are common to most 
embedded systems including the processor, and incorporating a high-level configurable 
Digital Block and interconnect design. In effect, PSoC architecture provides its users with 
a much simpler embedded system design model while still providing a degree of 
flexibility, enough to meet the needs of a large segment of the embedded systems market. 
 
Moreover, PRoC technology adds Spread Spectrum wireless capabilities to the mix, 
which enables the establishment of wireless communication channels between PSoC 
devices with relative ease.  
 
Design and development of both PSoC and PRoC technologies is made easy using the 
PSoC Designer IDE. The IDE allows GUI-based configuration of a device, and the 
generation of all the necessary API specific to that device. This process considerably 
eases firmware design and increases its reliability. 
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