Programmable System-on-Chip Technology from CypresSemiconductor
Digital Systems Architecture
Project Report

Submitted by: Abdallah Ismail
Student Number: 100304813
Date: December 3rd 2007

1.0 Introduction

A typical embedded system application makes usesohall processor that coordinates
execution and processing of data between perighd?abgram code is usually stored in
on-chip flash memory, while data is stored andeweéd from on-chip RAM [1].

A System-on-Chip (SOC)-based embedded system isvbiod uses configurable
hardware surrounding a soft or hard processor[@pr&he purpose of this report is to
study the architecture of Programmable System-ap-(#50C) from Cypress
Semiconductor and compare it to the more conveatiBRGA-based SoC architecture.

Next section provides a background on FPGA-bas&l&a Cypress PSoC
architectures. The third section studies the caoméigle digital components of the PSoC
architecture in detail. The fourth section talkeatthCypress Programmable Radio-on-
Chip (PRoC) technology and discusses how it coaldded to enable wireless
communication between PSoC devices. The fifth geddetails the use of PSoC
Designer, an integrated IDE used to design PSoQicatipns. The sixth section
demonstrates two applications: one PSoC applicatlinh demonstrates the concept of
dynamic re-configurability of PSoC devices, andtaeoPRoC application which
establishes a remote control channel between twalCRRvices.

2.0 Background

Conventional FPGA-based SoC architecture consisterdigurable logic blocks
(CLB'’s), configurable 1/0 blocks, programmable mti@nnect, and a soft or hard
processor core [2], as shown in Figure 1 below.

Interconnection
Logic Block Resources

I1/0 Cell

Figure 1: FPGA-based SoC Architecture

The CLB is the basic building block in an FPGAcdintains RAM for lookup tables
(LUT), flip-flops for clocked storage elements, andltiplexers for routing signals to

and from the CLB. Programmable interconnect withm FPGA is used to connect
different CLB’s and I/O blocks together and acbases to route the signals between the
different components of the FPGA [2].

A hard processor is a fixed processor embeddédueifrPGA, and surrounded by
programmable logic [2]. A soft processor is a loggscription of a processor than can be
included in the design of an FPGA-based SoC [2].

The low-level of abstraction and general-purpodanezof the building blocks making up
an FPGA makes it a very flexible solution. Desigmplexity however is high. To

design an FPGA-based SoC application one has tgrd@s select) a soft or hard
processor, design (or select) the required pergblset for the application, compile the
design into a gate level description, place andertiie design onto the FPGA, and finally
write the application’s software [2].

Similar to an FPGA-based SoC, a PSoC consistawdrig other things) a fixed
processor core, a number of configurable digitatk$, and programmable interconnect
[3]. A high level view of the PSoC architecturestlsown in Figure 2 below.

_l F:::--. T I_I Ijlor 5 I_I :=oﬂ 5 I_Ilpsn a I_Ij-s-t 2 I_I::rtz I_Ij-c--t 1 I_I l:lc-—_ grri'zﬁ
§ 14 T8 80 T8 I8

- Giobal Digital Interconnect ¥ —

Slobal Analog Interconnect

—

PSoC™ CORE

e SRAM Superdisony ROM (SROM] | Flash Momwoiatls Memory
Intermupt CPU Core [MEC)
Conbrolizr

1

ntarnal Low Speed Phass Lockao 32 MHZ Crysta
Oscllator (IL0D] Loop [PLL) oECiator (ECO)

24 WHzZ Intermal Main
Qeclliator (IND)

Multlple Clock Sourcas

T DIGITAL SYSTEM AMALOG SYSTEM T
Dagltal PSoC Block Array Analog FSoC Analzg L
. BlOCK ATTaEy s
|||:Ea:u| [z=E01] [ocesz] |IE’:\3||
] I
| [ceBoi] [zaEni] [ocEez] [ocEaz] all? h_!:;:':; -
||I’_"BE>-32| EEIREEE |IB:‘3|| El E 55 ;
- s
||r_~59:\3| EEIREE=H |IBS.3|| El El -
4 Dogltal Rows 2 Analeg Columns E——
s SYSTEM BUS — J
¥ ¥ ¥ L ¥ L
i sutiply POR and LVD | [Switch Irtemal =
Doghiat | muiate| | Decmatars oz tode VoRage use 0 Anabag
T IMACE] system Resets| | Pump | | Rerersnce el
SYSTEM RESOURCES é};@

Figure 2: Cypress Semi PSoC Architecture

The basic building block in a PSoC is the Digitéddk (Digital Block). This is
analogous to a CLB in an FPGA. A Digital Block haxeeis a much higher level of
abstraction than a CLB is.

Digital PSoC Block :
Primary
et » Function Output,
Clock | 16-1 CLK Data Path clock chaining to
Select .; WUX [SF-{-i_c » CLK - next block.
e ' F1 > DMUX » RO[2:0]
—— -]
Data |] 16-1 T 1-1 » RO[30
Select 1 |mux[————*| DATA F2 DMUX [3:0]
1
N INT # Block Interrupt
Aux -
Data | 41 = » Broadcast Output
Select | MUX - AUX_DATA
Configuration Registers
| FUNCTION[7:0] \ INPUT[7:0] | OUTPUT[7:0] \

Figure 3: Digital Block Top Level Block Diagram

A Digital Block consists of the data path, inputltiplexers, output de-multiplexers,
configuration registers, and chaining signals J3Jrough the RAM-based configuration
registers, a Digital Block may be configured tofpen any one of seven functions: timer,
counter, pulse width modulator (PWM), pseudo randeguence (PRS), cyclic
redundancy check (CRC), SPI, and a full duplex UAR]T Each Digital Block provides

8 bits of resolution (8-bit timer, 8-bit counter tcg. Multiple Digital Block’s can be
chained together to provide higher resolution fioms [1].

The programmable interconnect enables routinggrfads from any Digital Block to any
of the on-chip 1/O pins. Furthermore, any Digitéb&k’s output can be routed to any
Digital Block’s input. Configuring the digital inteonnect is again done through RAM-
based configuration registers [3].

By fixing the processor core and the componentgutant, and incorporating a high-
level configurable digital block and interconneesidjn, PSoC architecture provides its
users with a much simpler embedded system desigielmdnile still providing a degree
of flexibility, enough to meet the needs of a lasggment of the embedded systems
market [1].

To design a PSoC-based embedded system applicatierhas to select the function of
each of the digital blocks, route the signals t&rtproper end-points, and write the
application’s software in C or Assembly languageotledge of hardware design is not
required [1]. The next section looks at the PSashitecture in detail.

3.0 PSoC Architecture

| Pori 7 I_I For 6 I_I Farts I_I Fart & I_I Port 3 I_I Sart 2 I_I Port 1 I_I Porg [HRalcd
7y ” [t I 1t F 1t n.1r 'y 1t nt b t [y
- EYSTEM BUS | 3
¥ + L L ¥ ¥ w* ¥ Ty
- Giobal Digital Interconnect x —

. Global Analog Inssrconnect
PSoC CORE

- SEAN Supervisary ROM (SRoM] | Flash Monwolatie Memory
IntesTupt CPU Core [MBC) Si=ep and
contralisr Waichdog

.T

nternal Low Speed Phase Lockad 22 KHz Crysta
Cedliator (ILS) Loop {PLL) Decliator (ECC)

24 MHz Internal Raln
Seciliabor (IO}

Miultlple Clock Sourcas

i DIGITAL SYSTEM AMALOG SYSTEM T
Digltal PSoC Block Array Analog FSoC Analeg |
\ Block Array sl
|||:59:n| [zes01] [ocecz] |IE>-J_=I||
Analog r
||EBB-:-I| |:|E|5|1| |IB'2| |IB13| I3 r':::‘g_, -
o 3
||r_~ss-:u| [z=E21] [oeEaz] |:|-:B:3|| EI EI
||r:ss-:u| [z=E=1] [oeeaz] |:|-:333|| IEI)
4 Digllal Rows 2 Analcg Columns T
L SYSTEM BUS —
L F F A
] 1 : ¥]
T T POR and LvD | [Switen Irermal =
ICegit= accumuiate| | Decmatars 2c ode VoRage usSE LA AT 00
Tiocks MACE) system fesets| | Pump | | Reference Buiplexe
SYSTEM RESOURCES %}Jﬁ

Figure 4: PSoC top-level block diagram

A PSoC consists of four main elements [3], as shalove in the Figure 4:
1- The PSoC core is common to all PSoC families. it@ims a proprietary 24MHz
M8C CPU core, on-chip RAM and flash memories, npldticlock sources, a
sleep-and-watchdog timer, and an interrupt corgrgil].

2- The Digital System contains a number of digitalchk Each digital block can be
configured (and reconfigured) to perform one ofesal/digital functions such as
32-bit timer, 16-bit PWM, UART and SPI [1].

3- The Analog System contains a number of analog Bld€kch analog block can
be configured and reconfigured to perform one gésad analog functions such as
filters, amplifiers, tone generators, ADCs, and BAC].

4- Finally, System Resources provide additional PSaability. They include

multiply-accumulates (MAC), decimators, 12C, a ShiMode Pump (SMP), and
a full speed (12Mbps) USB [1].

All of the elements mentioned above are connedteigh a configurable digital and
analog interconnect switching fabric which enalig®erent blocks to be connected to
each other and to drive or be driven from any efltld pins available on-chip. The
Analog System, the Digital System, and the intengmt form the configurable core of
the PSoC device [3].

This report is concerned with the reconfiguratitatal components of the PSoC, as these
components most closely relate to the reconfigerilbrdware concept found in FPGA-
based SoC's. For information on the rest of theéesysincluding the PSoC core, the
Analog System, and the System Resources pleasdadid and [3].

3.1 Digital System

- [eart 7} =art 5 Fort 5) [eart 1} -
- IIP:—.IS-II I'F'Drl.-ill =-u-12|' p:t-:-'—.
Digital Clocks To Systermn Bus To Analog
From Cons System
DIGITAL SYSTEM
Digital PSoC Block Array
= Rioww 0 a4, T
—r| = £ =
- | CEBOD | | DEBO1 | | CCBIZ | | DCBO3 =
- w 5
|7 & e - p: =
=} h I gs
& i = Row 1 4 = I
L L [=E— ¥ 7 ¥ e
= & [pesic]|[oesi1|[pceiz|[DcE3] E o
€E| A) ¥ ¥ |22
[Rioww 2 4 = =
o] 5= 82
= B | DES20 | | DES21 | | DCE22 | | DCB23 | b= :_';
I ::-r 4 :—‘; ;_’E i |
[Row 3 4 =
—rEE ¥ Tl
= O |I:-E53I: |||:-E~531 ||I:CEEz||I:--:EE3| =
o E = i
=3 ¥ 2 |S2 =
- GIE]7:0] Gizbal Digha GOE[7-0)
. GIo[FD] Interconnsct G007 D] ——

Figure 5: PSoC Digital System Block Diagram

The configurable digital system in a PSoC congisthree main components [3]:
1. The Global Digital Interconnect (GDI)
2. The Row Digital Interconnect (RDI)

3. The digital blocks

The Digital Blocks can be configured to perform afi@even peripheral functions. The
RDI and GDI form the interconnect that allows sigmaiting to and from the digital
blocks. The RDI connects the outputs and inputiigifal blocks to the GDI. The GDI in
turn connects the RDI to the on-chip I/O pins. Tibge the RDI and GDI can route the
inputs and outputs of any of the digital blocksAmstn each other and to any of the on-
chip 1/0 pins. Figure 6 below shows a typical P@pplication that uses a Pulse-Width-
Modulated (PWM) Output. Digital Block 0 is configed as an 8-bit PWM whose output
is routed to pin 0 of port O through the configueathgital interconnect.

IO 7 600 g7 GOE o
Per 0.0 b [t RIO(O] | pmoo 5
RIO[1]

Tt RIOZ]
RIO3]

BCO

1) 0E800 2B | DCEBZ | DCBG
Py
<! PWME

ROO[0]
ROO[1]
ROO[2]
RO0[3]

=T

[
=

LA

Figure 6: Digital Block_0 is configured as an 8-biPWM whose output is routed to
pin O of port O through the digital interconnect. I buses are vertical green. RDI
Input bus is horizontal red. RDI output bus is horizontal blue. Digital blocks are the
4 blocks shown in the middle of the diagram

Configuration of the digital blocks and the digitalerconnect is done by programming
various RAM-based registers. Specific configuragiohthese registers can be stored in
the on-chip flash and loaded into RAM whenever eéethus allowing for dynamic
reconfiguration of the PSoC.

The next subsection studies the Global Digitalrtdanect (GDI), the following
subsection studies the Row Digital Interconnect IjR&nd the last subsection studies the
Digital Block. The three subsections will therefamver the configurable digital
components of PSoC devices.

3.1.1 Global Digital Interconnect

The GDI consists of four 8-bit buses which allogrsils to pass to/from the device pins
from/to the core of the PSoC device [3]. Two of thuses are input buses called Global
Input Odd (GIO) and Global Input Even (GIE) [3].&bther two are output buses called
Global Output Odd (GOO) and Global Output Even (G{3E Odd busses connect to
odd /O ports such as ports 1, 3, 5, and 7. Silyjlaven buses connect to even I/O ports
such as ports 0, 2, 4, and 6.

The four GDI buses are shown as vertical greengarE 6. The Figure shows the output
of the first Digital Block being routed to output® of port 0 through the GOE_O0.

3.1.2 Row Digital Interconnect

The RDI consists of four Row Input nets (RI[3:0fdafour Row Output nets (RO[3:0])
[3]. The input nets can be seen in Figure 6 asatiered horizontal lines. Their job is to
route signals from the GDI to the inputs of theiigBlocks [3]. Each Row Input
contains a 4-to-1 multiplexer whose inputs arelfgdour GDI lines. The outputs of
these muxes are Row Inputs (RI[x]) [3]. This metoad any single Row Input net can
connect to one of four possible GDI lines [3], as be seen to the left of Figure 7 below.
Since the inputs to the muxes are unique to each ancomplete Row Input has access
to every global input line in a PSoC device [3].

T Digital PSoC Block Row
ves: +——
BCROW 0 —
BCROW 1 —H= & rRow Broadeast (BC)
BCROW 2 — ‘ _ BCROW
BOROW —
. Resetsto 1
Previous Block Data* — RI0] | RO — - GOE[0]
Previous Block CLK* ——————————— IE GOE[4]
ACMP[3:0] Do} L GoOoj0]
SYSCLKK2 —|——— RO[1] —GO0[4]
vol 4/————
V2 —4/—————
GOE[1]
CLK3ZK 4—— R0[30] RI“] | RO“] _GOE[S]
RI2:0] =) [Lif GOoO[1]
RO[2] —GOO[3]
GIE[0] — i
a1 4 P.?IOC Block Grouping N GOE]
clof] —H | DATA[15:0] BCROW (! RI[2] | RO[2] GOE[6]
GIOj] —H »| CLK[15:0] RO == 1o] | Goop)
GIE[1] —H » AUX[3:0] R FRO0K
GIE[5] —H
GIo[1] —H GOE[3)
ciofs1 8 |DBBx0||DBBx1||DCBx2||DCB)G| RI3] | RO[3] " GoEf]
GIE[2] —H = ! GOO[3]
ciEe] | »FPB RO[D] L Goo[7]
EIOZ 1 52 - TPB TNB [
GO DBI[7:0] FNB |-— KEEPER[3:0]
i DBI INT[3:0] Resets fo |
G ™
G U
ol —H =21 FNB
GIO[T]— INT[3:0]
FPB
TPB
DB[7:0]
DBI
* "Previgus” inputs always come from the previous block. Therefore, block ‘0" inputs come from
the previous row, while block ‘1" inputs come from block 0, ete. If there is no previous block (i.e.,
there is no row above the current row), previous inputs are tied low. The chaining inputs FPB and
FNB are also tied low when there is no previous block or next block.

Figure 7: Digital PSoC Block Row Structure

Each of the four muxes in a Row Input can be cdietidy writing to the Row Input
Register [3]. As with all other configuration reigiss, the Row Input Register is RAM-
based. This means that it can be configured dwtizng up, as well as during normal
operation of the PSoC device. This allows for dyramconfiguration of the input nets
of the PSoC device. Figure 8 below shows an exampidnich Digital Block O is

configured as an input capture 8-bit timer whogmitns fed from pin O of port O through

Row Input RI[O].

7 GIO 7 GE g

RIO[O]

7 GoO

RIO1]

e
jEx,

RID[2]

RIOE3]

BCO

TIMERS

4) 03500
Timer
TIMERE

ROD[O]

(DBB01 (0CB02 (0CB03
| |

ROO[1]

ROD[2]

ROD[3]

LA

2 GOE g

Porto

Figure 8: Digital Block 0 is configured as an 8-biinput-capture Timer whose input
is fed from pin O of port O through the digital interconnect. Row Input nets are

horizontal red.

The Row Output nets are a bit more involved th@&Rbw Input nets, as can be seen to
the right of Figure 7. In the Figure, the blockdddl Lx represents a 2-input look-up
table (LUT). The LUT allows the user to specify ame of 16 logic functions that
should be applied to the two inputs [3]. A moreailet structure of one Row Output is
shown in figure 9 below. The 16 logic functions ah®wn in table 1 [3].

RI[0]
RO[0] ——

RO[1]

—>— GOE[0]

—a GOE[4]
é—UTD > coo[0]

GOO[4]

Figure 9: Example of LUTO configuration

LUT=[3:0]

0h:
1h:
2h:
3h:
4ah:
ah:
Gh:
Th:
ah:
gh:

Fh:

Ah:
Bh:
Ch:
[y
Eh:

0000 FALSE
0001: A .AND. B
0010: A .AND. B
0011: A

0100 A AND. B
0101: B

0110: A XOR. B
0111 A .OR. B
1000:
1001 A XNOR_ B
101008
1011: A OR. B
1100: A

1101
1110: A. NAND. B
1111: TRUE

Table 1: LUT logic functions

The output of a LUT can drive as many as 4 GDIdjrierough configurable tri-state
buffers [3]. The LUT’s inputs, outputs, and logisttions are configured through RAM-
based registers which can be loaded with settitogedin flash memory after power up
or during normal operation of the device, thuswiia for initial configuration and
dynamic reconfiguration of signal routing from ttigital blocks to the output pins.

Row Output RO[3:0] are shown as horizontal bluesim Figure 6 and Figure 8.

3.1.3 Digital Blocks

Digital PSoC Block

Primary

> » Function Qutput,
Clock ol 161 CLK Se P clock chaining to
| MU > Re- —a| CLK next block.
Select - MLX Sync 5
' F1 > LMUX » RO[3:0]
— -
Data |] 16-1 N —
s g -
Select i Mux[——*| DATA DMUX
g INT » Block Interrupt
Aux
Data | 41 2 BC » Broadcast Output
Select | Mux > AUX_DATA

Configuration Registers
|FUNCTION[?:G]‘ INPUT[7:0] | OUTPUT[7:0] ‘

Figure 10: Digital Block Top Level Block Diagram

A Digital Block consists of the data path, inputltiplexers, output de-multiplexers,
configuration registers, and chaining signals T3jrough the RAM-based configuration
registers, a Digital Block may be configured tofpen any one of seven functions: timer,
counter, pulse width modulator (PWM), pseudo randeguence (PRS), cyclic
redundancy check (CRC), SPI, and a full duplex UABJT Each Digital Block provides

8 bits of resolution (8-bit timer, 8-bit counter tcg. Multiple Digital Blocks can be
chained together to provide functions with highessalution [3].

There are three inputs to a Digital Block: Clocital and auxiliary [3]. Typically, each
function has a clock and a data input that carebected from one of 16 possible input
sources, through the 16-to-1 input mux [3]. Thavikes the auxiliary input, which is
selected through the 4-to-1 mux. The auxiliary inpudesigned specifically to act as the
SPI Slave-Select signal for a Digital Block configd in Slave SPI mode [3].

There are five main outputs to a Digital Block: Anpary output, an auxiliary output, a
chaining signal, and a block interrupt [3]. Thenpairy and auxiliary outputs can be
configured to drive the RDI Row Output bus throdgb 1-to-4 de-muxes [3]. The
chaining signals propagate information from oneit2ldlock to the next, thus allowing
functions with higher resolutions to be implemerit&jd The block interrupt is function-
dependant and is used to trigger a vector-basedupt signal to the PSoC core [3].

The input signals, the output signals, and thetfonf the data path are configured by
seven RAM-based registers: Three Data Registé&esnérol Register, a Function
Register, an Input Register, and an Output Redi8ter

The definition of most of these registers is fumetdependant. For example, the Control
Register contains the function control and stattssfor the selected function. The
definition for each bit in the Control Register ogas depending on the selected function,
as shown in table 2 below [3].

Add. | Name | Rows || Bit7 | Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bit Bitd [Access
0x¢h | DiBxxCRO | 4,321 Function controlistatus bits for selected function[6:0] Enahle #:00
Function Description
Timer Thera are three hits in the Control {CRO) register: one far enabling the block, one for setfing the optional interupt on capture, and one to select

hetween one-half and a full clock for Terminal Count (TC) output.

Counter One bit enable only.

Dead Band Thera are three hits in the Control (CRO) register: one hit for enabling the hlack, and two bits to enable and control Dead Band Bit Bang made.
When Bit Bang mode is enabled, the output of this register is substituted for the PWM reference. This register may be toggled by user firm-
ware, fo generate PHI1 and PHIZ output clock with the programmed dead time. The opfions for Bit Bang mode are as follows:

0 Function uses the previous clock primary output as the input reference.
1 Function uses the Bit Bang Clock register as the input raference.

CRCPRS Thers are two bits are used to enable operation.

SPIM The SPI Control (CRO) register containg both control and status bits. There are four control bits that are read/write: Enable, Clock Phase and
Clock Polarity to set the mode, and LSh First which controls bit ordering. There are two read only status bits: Ovarrun and SPI Complate.
Thers are two additional read only status bits to indicate TX and RX Buffer status.

3PIS The SPI Confrol (CRO) register contains both control and status bits. There are four control bits that are readfwrite: Enable, Clock Phase and
Clock Polarity to set fhe mode, and LSh First which controls bit ordering. Thers are two read only status bits: Overrun and SPI Complete.
There are two additional read only status hits to indicate TX and RX Buffer status.

TXUART The Transmitter Control (CRO) register containg three confrol bits and two status bits. The control bits are Enable, Parity Enable, and Parity
Type, and have read/write access. The status bits, TX Reqg Empty and TX Complate, are read only.

RXUART The Receiver Control (CRO) register contains both control and status bits. The three control bits are read/write: Enable, Parity Enable, and
Pafity Type. There are five read only status bits: RX Reg Full, RX Active, Framing Error, Overrun, and Parity Emor.

Table 2: Control Register Description

Similarly, the definition for the three data regist changes depending on the selected
function of the Digital Block. For example, wherethimer function is selected, Data
Register 0 is automatically configured to hold @munt value, Data Register 1 is
automatically configured to hold the Period, andeDRegister 2 is automatically
configured to hold the Capture/Compare value [3erhately, if the SPI Master function
is selected, then Data Register O is automaticalhfigured to function as the serial
shifter, Data Register 1 is automatically configlte function as the transmit buffer, and
Data Register 2 is automatically configured to timtas the receive buffer [3].

This leaves the Function Register, the Input Regisind the Output Register. The
Function register enables selection of the interfdadtion of the Digital Block [3]. The
Input Register enables configuration of the thrgrit signals of the Digital Block [3].
The Output Register enables the configuration efditput signals of the Digital Block

[3].
Since all seven registers are RAM-based, seveatdDBlock settings can be stored in

flash memory and later reloaded as required bappdication, thus allowing for the
function of each Digital Block to be dynamicallycomfigured.

4.0 Programmable Radio-on-Chip Technology

Programmable Radio-on-Chip (PRoC) technology coetPSoC technology with a
fully-programmable on-chip wireless transceiver. [4]

PO P1 P2
A A A IRQ, MISO
yYvy
1
5128
8KEB Flash SRAM 12 Ports
HK13_ouUT
2.4-GH=z WirelessUSB
Radio Transceiver PACTL
PSolC MEBC Core RFIMN
RFOUT
Digital PSoC Analog PSoC System Resources WRES
Block Array Block Array Clacks, 12C, POR, Ref

Figure 11: PRoC Block Diagram

The wireless transceiver portion is a complete tBRintenna radio modem designed to
operate in the 2.4GHz ISM band [5]. It containsw-Intermediate Frequency (low-IF)
front end, a Gaussian Frequency Shift Keying (GF®kK@lem, and a reconfigurable
Direct Sequence Spread Spectrum (DSSS) basebarespor [5]. A
Serializer/Deserializer (SERDES) block providesebivel framing of transmit and
receive data, and an SPI interface provides coiitydb the rest of the PSoC [5].

DIOVAL ﬁf
DIO wfe " l
D383 GFSK
SERDES » N
IRQ = A —{ Baseband [« | Modulator
’ A
55 >
3CK >
MISO Digital D383
MOSI » - SEPéDES — Baseband 1_"' GF3K
B Demodulator
RESET >
Fo > - Synthesizer

OUT B—oI

X13IN
X113
X130

Figure 12: Wireless transceiver simplified block dagram
The transmit operation begins by loading a new yteethe Serializer using the SPI
interface of the radio. The Serializer in turn Isdlde byte into a serial shift register
whose output feeds the DSSS baseband processadihgputput of the Serializer is
programmable at 3 different data rates: 16kbpsbB&kand 64kbps [5].

The DSSS baseband processor uses Gold Codes &al gareh incoming bit into a
maximum of 64 chips [5]. Gold Codes are chosentdubkeir excellent autocorrelation

and cross-correlation properties. The number gi<per bit (cpb), also known as the
spreading factor, depends on the selected datsbéxpb is used when 15kbps is selected,
32cpb is used when 32kbps is selected, and 16qped when 64kbps is selected [5].
The output of the baseband processor is therefbxe@ 1Mcps baseband signal.

The output of the DSSS baseband processor fee#SK @&odulator. This modulator
uses a DSP-based vector to convert the basebamal tagan accurate IF GFSK carrier
[5]. The modulated signal is then mixed up to thprapriate frequency channel by
tuning the frequency synthesizer to that channet ffequency synthesizer is tunable
over 80 1MHz channels with channel O starting 40Q@GHz and channel 79 ending at
2.479GHz. The modulated signal occupies a bandvafiiiMHz [5].

The output of the mixer feeds an integrated powspldier that provides a
programmable output power control range of 30dBawen steps, as shown in Table 3
below [5].

PA Setting Typical Qutput Power (dBm)

7 0

& -24
5 -56
4 -97
3 -16.4
2 -208
1 -24 8
0 -25.0

Table 3: Internal PA Output Power Step Table

On the receive side, an FM detector with autonddia slicer demodulates the mixed
down GFSK signal into baseband [5]. The DSSS bamkpeocessor correlates the
incoming baseband signal with the programmed Galde&equence, thus de-spreading
the signal, and feeds the De-Serializer with theplead signal. The de-serializer issues
an interrupt to the external processor which im t@ads the newly received byte through
the SPI interface [5].

As mentioned above, programmable features in tthie raclude the Gold Code selection,
frequency channel, data rate, and output powerrQiiogrammable features include
power management and RSSI functionality [5].

5.0 Designing with PSoC Designer

PSoC Designer is an Integrated Development EnvientifiDE) used to develop
applications for PSoC and PRoC devices. It contaiBgvice Editor, an Application
Editor, a C-Compiler, an Assembler, a Builder, arfdeal-Time Debugger [6].

The Device Editor is really what separates PSoGdnes from other microcontroller-
based development environments. It allows GUI-basediguration of the entire PSoC,
as well as automatically generates all the necggdar specific to an application [6].

% cxamphe_extemnal_crystal_2Hpin [CYEC27443] - PSol Designer - [Device Editar] [_ O] %] I

Fie Edt “iew Pigect Corbg Bud Debug Plogiem Took wWindow Heb
Bl wd@ + 208 S aE(2=T7|daaair: - 28 [H&
R L N s

|| E H Ao ﬁ 1}: FtI parnple Estbeiral_| -_--|.-._l| |

.4 T | TSP

Glooal Flesowces =] | Seksted Usaibicdibs (23 Example_External_Copstal_2fpin |
CRU_Clock A_MHz [= |23, =
T Select Exlemd @ EEE' : JE j
FLL_toda Dizable —] || A0OHC14 1 DTMFDIE_ 1 [EREIE |
Sleep_Timen 1_H=
W= SyeZ kA 1
W2 Y1/ 1 g sy = oy
W3 Souice Syl . E! :
I T v 1 e | e e B F
CRCIEA = i | , |
Uz Modube Paramalers E
e
= ¥ I 3
| [
2
Hame: Fuxf Selct |- i
Fol 0.0 PO SidCFL ; o]
Fol 01 POl S1dCRU i == = Sy
For_0_2 PO SidCPL e =
Pl 0.3 PO S0P LI S e [¥
For 0_4 FOJ4] SiPU - _ frs| | |
Fol 05 PO SidCPU It i 1t i W
Forl 0LE POIE] SidcFl |- - - []
Feel DT PO[7] Sl } k b b
Forl 1.0 P10 SidCPy | i | |
Foel_1_1 P[] SidCPL > e e
Fol 12 FI3 SR =
For Heln. piess F1 [. | A

Figure 13: Selected (Yet-to-be-placed) user modules

Figure 13 above shows a snapshot of the Devic®@EME0C global resources can be
configured at the top left of the figure. /O pocen be configured at the lower left of the
figure. Digital and Analog Blocks can be selectgdced, and routed in the main area in
the middle. All of this is done graphically.

After configuring, placing and routing a desigre Device Editor will generate
application files based on the device configuratimese application files include
Application Programming Interface (API) and Intgr®ervice Routine (ISR) shells [6].
The Device Editor will also create a datasheet thasethe device configuration [6].

Once the application files are generated, the Appbn Editor can be used to create the
application code and build it into a HEX file. THE&X file is then loaded into the on-

chip flash memory of the target device. Flash-paiogning is performed using the PSoC
Programmer tool which accompanies PSoC Designer [7]

6.0 PSoC Applications

Two applications are implemented and their hardifiamavare described in this section.
The first application generates multiple PWM signifabm a single PWM generator and
is used to illustrate the concept of dynamic refigomability of the PSoC device. The
second application establishes a point-to-point &ertontrol channel using PRoC
technology. The purpose of this application idltestrate the ease with which a Spread
Spectrum wireless application could be developétguBRoC technology.

6.1 Application 1: Multiple PWM Signal Generation

The first application generates multiple PWM sigfabm a single PWM generator. The
purpose of this application is to demonstrate greadic re-configurability of the Digital
system.

First, the PSoC is graphically configured as shawthe figure below.

Figure 14: Application configuration

As can be seen from the figure, Digital Blocks @ drare configured to function as a 16-
bit PWM. RDIO (the horizontal blue lines) connettts output of the PWM to I/O pins

1 0to 1_3. Reconfiguring the output of the PWMuat-time to different rows of RDIO
will route the PWM signal to different pins. Forawple, configuring the output of the
PWM to row 0 of RDIO connects the PWM output to pirD, while reconfiguring the
output of the PWM to row 1 of RDIO connects the PWiput to pin 1_1. This enables
us to generate multiple PWM signals from a singléMPgenerator.

The output of a Digital Block is configured throud RAM-based Output Register [3],
shown below. Bits 1 and 0 select the RDI row toalitthe output of the block connects.

Figure 15: Digital Block Output Register bit definitions

The output of the PWM connects to one pin at a tiftes means that all other pins are
left unconnected for a small period of time. Toidwglitches on the unconnected pins,
they must be driven low when not in use. This isalby reconfiguring the LUT which
drives these pins to false [3]. The operation eftbkT was discussed in section 3.1.2. Its
architecture and truth table are repeated herthéreader’'s convenience.

Figure 16: Example of LUTO configuration

Table 4: LUT logic functions

Application code is based on a Finite State Macliig&M) with four states. The PWM is
driven by a 60 KHz clock. The period is set to 3DQ@alf a second), and the pulse width
is set to 15000 (quarter of a second). The PWNMessin interrupt every half a second.
The interrupt is used to trigger the next stateditéon in the FSM, during which the
reconfiguration takes place.

Main initializes the PWM FSM, enables global intgats, and loops indefinitely. The

ISR calls the PWM task which triggers the next$raon in the FSM. Application code

is shown below.

#include <m8c.h> Il part specific constaartd macros
#include "PSoCAPL.h" // PSoC API definitions &l User Modules

/[External function prototypes
extern void pwm1_init(void);
extern void task_pwmZ1(void);

void main()

{
/linitialize the PWM task
pwml_init();

/lenable global interrupts and loop indeinitely
M8C_EnableGint;
while (TRUE);

IIPWM ISR

/[Triggers every 0.5 second on PWM terminal count
/[calls the PWM task

#pragma interrupt_handler pwm1_isr

void pwmZ1_isr(void)

{
task_pwm1();
}
[m e s
/[l PWM FSM
[m e s

#include <m8c.h> /I part specific constartd macros
#include "PSoCAPI.h" /I PSoC API definitions &l User Modules

//state definitions
#define STATE_PWM_P10 0 /loutput PWM on Port 4 @i
#define STATE_ PWM_ P11 1 /loutput PWM on Portd P

#define STATE_PWM_P12 2 /loutput PWM on Port 4 Pi
#define STATE_PWM_P13 3 /loutput PWM on Port 4 Bi

//Bit masks for RDI LUT registers

#define RDIXLTO_LUTO_A 0x03
#define RDIXLTO_LUTO_FALSE 0x00
#define RDIXLTO_LUT1_A 0x30
#define RDIXLTO_LUT1_FALSE 0x00
#define RDIXLT1_LUT2_A 0x03
#define RDIXLT1_LUT2_FALSE 0x00
#define RDIXLT1_LUT3_A 0x30
#define RDIXLT1_LUT3_FALSE 0x00

//Bit masks for Digital Blocks Output Registers
#define DxBxxOU_AUXCLK_SYNC 0x40

#define DxBxxOU_OUTEN 0x04
#define DxBxxOU_ROWO 0x00
#define DxBxxOU_ROW1 0x01
#define DxBxxOU_ROW?2 0x02
#define DxBxxOU_ROW3 0x03

/Ivariable which holds the current state of the FSM
static BYTE state;

/linitializes the PWM task

void pwmZ1_init(void);

/lthe PWM task

/limplements an FSM which switches the output ef th
[[PWM to four different I/O pins: P1_0to P1 3

void task_pwmZ1(void);

/lInitializes the PWM task
void pwmZ1_init(void)
{
[linitialize first state
state = STATE_PWM_P10;

/lenable the block interrupt and start the PWM
PWM1_Enableint();
PWM1_Start();

/lthe PWM task

/limplements an FSM which switches the output ef th
[[PWM to four different I/O pins: P1_0to P1 3

void task_pwmZ1(void)

{

/lthe FSM contains 4 states connected in a cirecaénner:
/lthe first state connects to 2nd, 2nd to 3rd,t8rdith,
/land 4th back to 1st.
/[Each state performs the following:
//1-stop the PWM
/[2-reconfigure the output of the PWM to the propa
//3-reconfigure the drive of all other pins to low
/l4-restart the PWM
//5-go to next state
switch (state)
{
case STATE_PWM_P10:

/[stop the PWM

PWM1_Stop();

/lreconfigure output of PWM to pin 1_0
PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC |
DxBxxOU_OUTEN | DxBxxOU_ROWO;

/lreconfigure the drive of pins 1_1,1 2, and o Bw
RDIOLTO = RDIXLTO_LUTO_A | RDIXLTO_LUT1_FALSE;
RDIOLT1 = RDIXLT1 LUT2_FALSE | RDIXLT1 LUT3_FALSE

/lrestart the PWM
PWM1_Start();

//go to next state
state = STATE_PWM_P11;
break;

case STATE_PWM_P11:
PWM1_Stop();

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC |
DxBxxOU_OUTEN | DxBxxOU_ROW1,

RDIOLTO = RDIXLTO_LUTO_FALSE | RDIXLTO_LUT1_A,
RDIOLT1 = RDIXLT1_LUT2_FALSE | RDIXLT1_LUT3_FALSE

PWM1_Start();

state = STATE_PWM_P12;
break;

case STATE_PWM_P12:
PWM1_Stop();

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC |
DxBxxOU_OUTEN | DxBxxOU_ROW?2;

RDIOLTO = RDIXLTO_LUTO_FALSE | RDIXLTO_LUT1_FALSE
RDIOLT1 = RDIXLT1_LUT2_A | RDIXLT1_LUT3_FALSE;

PWM1_Start();

state = STATE_PWM_P13;
break;

case STATE_PWM_P13:
PWM1_Stop();

PWM1_OUTPUT_MSB_REG = DxBxxOU_AUXCLK_SYNC |
DxBxxOU_OUTEN | DxBxxOU_ROWS3;

RDIOLTO = RDIXLTO_LUTO_FALSE | RDIXLTO_LUT1_FALSE
RDIOLT1 = RDIXLT1_LUT2_FALSE | RDIXLT1_LUT3_A;

PWM1_Start();

state = STATE_PWM_P10;
break;

6.2 Application: Remote Control

The second application establishes a point-to-geemote Control channel in the
2.4GHz ISM band. The purpose of this applicatiotoiglustrate the ease with which a
Spread Spectrum wireless application can be degdlaping PRoC Technology.

The application consists of two components: Trattemand Receiver. The hardware for
both nodes is shown below.

Figure 17: Transmitter Hardware

Figure 18: Receiver Hardware

The transmitter continuously samples the switcmeeted to PO_2. When pressed, the
transmitter sends a packet containing four preddfinytes to the receiver on channel O

of the 2.4GHz band. The receiver listens to thanhcel continuously and when it
receives a valid packet it toggles the LED conretveP1 0.

The Device Editor in PSoC Designer is first usedrephically configure the transmitter
and receiver nodes. The Device Editor then geneedi¢he necessary API for using the
device, including functions to establish wirelessnxmunication. The Application Editor

is then used to write the application code for eafdine nodes. Transmitter and Receiver
codes are shown below.

#include <m8c.h> /I part specific constaartd macros
#include "PSoCAPL.h" // PSoC API definitions fdf User Modules

#define LED_PORT PRT2DR
#define LED 0x80
#define SWITCH_PORT PRTODR
#define SWITCH 0x04

#define PACKET_LENGTH 4

#define MESSAGE_EMPTY 0
#define MESSAGE_TIMEOUT 1

/Imacros used to sample a switch
#define WAIT_FOR_PRESS while(SWITCH_PORT & SWITCH)
#define WAIT_FOR_RELEASE while(!(SWITCH_PORT & SWCH))

/la 64-chip Gold Code
const BYTE pn_code[8] = {0x36, OxF3, 0x8C, 0xB5,1Qx 0x4A, OxCA, Ox1F};

BYTE message;
/la predefined packet to be used as a commandgteta LED at the receiver
BYTE packet[PACKET_LENGTH] = {0x12, 0x34, 0x56, 0}

/[function used to debounce a switch once pressesleased
/limplements a 40ms blocking wait
void debounce_switch(void);

/IMain

void main()

{
/linitialize the transceiver
Radio_Start();
//set the 64-chip Gold Code stored in flash
Radio_SetPnCode(pn_code);
/Iset channel 0 to be used for transmission
Radio_SetChannel(0);

/lenable global interrupts

M8C_EnableGint;

//do forever

while (TRUE) {
/lwait for switch press
WAIT_FOR_PRESS;
/[debounce
debounce_switch();
/Iwait for switch release
WAIT_FOR_RELEASE;
/[debounce
debounce_switch();
/ltx packet
LED_PORT ~= LED;
Radio_SendData(PACKET_LENGTH, packet);

}

}/end main

/limplements a 40ms blocking wait
/lused to debounce a switch press and release
/luses timer interrupt
void debounce_switch(void)
{
//set message to EMPTY, enable timerinpt and start the timer
/[Timer ISR will set message to TIMEO@dfter 40ms
message = MESSAGE_EMPTY;
Timer_Enablelnt();
Timer_Start();

/Iwait for timer ISR to set messagd IIEOUT
while (message == MESSAGE_EMPTY);,
//stop timer

Timer_Stop();

[[Timer ISR

/ltriggers when timer expires

#pragma interrupt_handler timer_isr

void timer_isr(void)

{
//set message to TIMEOUT
message = MESSAGE_TIMEOUT;

Hlend of file

#include <m8c.h> /I part specific constartd macros
#include "PSoCAPI.h" /I PSoC API definitions &l User Modules

#define LED_PORT PRT1DR
#define LED 0x01
#define TIMEOUT _1S 60000

#define PACKET_LENGTH 4

/[same 64-chip Gold Code used at the transmittier si
const BYTE pn_code[8] = {0x36, OxF3, 0x8C, 0xB5,1Qx 0x4A, OXCA, Ox1F};

/lused to buffer an incoming packet
BYTE packet[PACKET_LENGTH];
BYTE valid[PACKET_LENGTH];

void main()

{
BYTE length;

/linitialize the transceiver
Radio_Start();

//set the Gold Code stored in flash
Radio_SetPnCode(pn_code);

//set channel O to be used in reception
Radio_SetChannel(0);

//do forever
while(TRUE) {
Iltry to receive a 4-byte packet withid second timeout
//blocking read
length = Radio_bReadData(PACKET _LENGTH, packelid, TIMEOUT _1S);

/Ilcheck that the packet length is adrre
if (length I= PACKET_LENGTH) continue;
/Ilcheck that the command for toggling LED is correct
if ((packet[0] == 0x12) && (packet[1] == 0x34) &&packet[2] == 0x56) &&
(packet[3] == 0x78)) {
LED_PORT "= LED;
}
}

}/end of main
7.0 Conclusion

The fine-configurability of FPGA-based SoC’s proegdan extremely flexible platform
that is both hardware and software programmable.drawback to such architecture
however is the design complexity present and timepbex hardware skills required to
mold an FPGA-based SoC into the desired application

PSoC technology from Cypress Semiconductor tadklkeslesign complexity and the
required hardware skill issues by fixing the comgrus that are common to most
embedded systems including the processor, andpgacating a high-level configurable
Digital Block and interconnect design. In effecBd® architecture provides its users with
a much simpler embedded system design model wiilllereviding a degree of

flexibility, enough to meet the needs of a larggnsent of the embedded systems market.

Moreover, PRoC technology adds Spread Spectruniesgeapabilities to the mix,
which enables the establishment of wireless comaatioin channels between PSoC
devices with relative ease.

Design and development of both PSoC and PRoC témfies is made easy using the
PSoC Designer IDE. The IDE allows GUI-based comfigjon of a device, and the
generation of all the necessary API specific ta tievice. This process considerably
eases firmware design and increases its reliability

8.0 Reference

[1] Monte Mar, Bert Sullam, Eric Blom, “Field Pragnmable Mixed-Signal SoC Offer
More Levels of Integration”, Cypress Microsystems,IMay 13 2002, Available at:
http://www.planetanalog.com/showArticle.jhtml?alei®©=12802111

[2] Bob Zeidman, “Introduction to Programmable ®yss on a Chip”, Zeidman
Technologies, 07/27/2005, Available at:
http://www.pldesignline.com/showArticle.jhtml;jséssid=SIR3IM50KG3NDUQSN
DLPSKHOCJUNNZ2JVN?articlelD=166403118&queryText=babitiman

[3] Cypress Semiconductor, “PSoC Mixed Signal Arregchnical Reference Manual”,
Cypress Semiconductor, PSoC TRM version 2.10, 284iable at
WWW.CYpress.com

[4] Cypress Semiconductor, “CYWUSB6953: WirelesoRRrlash Programmable MCU
+ Radio”, Cypress Semiconductor, August 19, 2005

[5] Cypress Semiconductor, “CYWUSB6935: WirelessU3B2.4-GHz DSSS Radio
SoC”, Cypress Semiconductor, November 18, 2004

[6] Cypress Semiconductor, “PSoC Designer: IDE W8anual”, Cypress
Semiconductor, Document # 38-12002 Rev E, 2005

[7] Cypress Semiconductor, “PSoC Designer: Progranidser Guide”, Cypress
Semiconductor, Version 1.22, 2005

